Text
Explainable Artificial Intelligence Menggunakan Metode-Metode Berbasis Nearest Neighbours
Artificial Intelligence (AI) yang dapat diterjemahkan sebagai kecerdasan buatan atau kecerdasan artisial, terus menjadi teknologi yang semakin disruptif pada bidang perbankan, keungan hiburan, bisnis digital, dan e-commerce.
Gelombang PHK (Pemutusan Hubungan Kerja) telah menimpa jutaan pegawai bank di Amerika dan sejumlah negara do Eropa sejak tahun 2015. Gelombang PHK semakin cepat membesar, emgubahnya menjadi tsunami, ketika terjadi pandemi covid-19 di awal tahun 2020. Namun, pada bidang tertentu yang sensitif dan berakibat fatal, seperti kesehatan, manufaktur, dan transportasi, tingkat disrupsinya belum terlalu mengkhawatirkan.
Hanya sebagian kecil (atau hampir tidak ada) perusahaan yang mengaplikasikan AI dalam otomatisasi proses bisnisnya. Alasan utamanya adalah model-model (baik itu klasterisasi, klasifikasi, regresi, deteksi, hingga rekognisi) yang dihasilkan oleh AI memiliki perfomansi yang dilematis. Model-model yang memberikan akurasi tinggi biasanya bersifat black box tidak mampu memberikan penjelasan atas keputusan yang dihasilkannyaumumnya memberikan akurasi rendah (belum layak diaplikasikan).
Untuk mengatasi dilema tersebut, para pakar telah membangun berbagai teknik untuk mengubah model-model yang semula black box menjadi white box. Teknik baru ini disebut eXplainable Artificial Intelligence (XAI). Buku ini memberi konsep dan gambaran XAI secara holistik, namun simpel, bagi anda sebagai akademisi maupun praktisi.
Tidak tersedia versi lain